Robot introspection through learned hidden Markov models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robot introspection through learned hidden Markov models

In this paper we describe a machine learning approach for acquiring a model of a robot behaviour from raw sensor data. We are interested in automating the acquisition of behavioural models to provide a robot with an introspective capability. We assume that the behaviour of a robot in achieving a task can be modelled as a finite stochastic state transition system. Beginning with data recorded by...

متن کامل

Robot Reliability Through Fuzzy Markov Models

In the past few years, new applications of robots have increased the importance of robotic reliability and fault tolerance. Standard approaches of reliability engineering rely on the probability model, which is often inappropriate for this task due to a lack of su cient probabilistic information during the design and prototyping phases. Fuzzy logic o ers an alternative to the probability paradi...

متن کامل

Abstracting from Robot Sensor Data using Hidden Markov Models

ing from Robot Sensor Data using Hidden Markov Models Laura Firoiu, Paul Cohen Computer Science Department, LGRC University of Massachusetts at Amherst, Box 34610 Amherst, MA 01003-4610

متن کامل

Mobile Robot Navigation based on localisation using Hidden Markov Models

In this paper, we implement a method of mobile robot naviga~ion using Hidden Markov Models (HMMs). It is a place-based navigation, in which the robot localises itself in previously learnt environment. We use the laser range data from the robot to scan the environment and to distinguish between different places. First the robot learns after several trials about the places, it then recognises the...

متن کامل

Logical Hidden Markov Models

Logical hidden Markov models (LOHMMs) upgrade traditional hidden Markov models to deal with sequences of structured symbols in the form of logical atoms, rather than flat characters. This note formally introduces LOHMMs and presents solutions to the three central inference problems for LOHMMs: evaluation, most likely hidden state sequence and parameter estimation. The resulting representation a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Artificial Intelligence

سال: 2006

ISSN: 0004-3702

DOI: 10.1016/j.artint.2005.05.007